
Adaptation of an embedded architecture to run
Hyperledger Sawtooth Application

Roland Kromes
Université Côte d’Azur

LEAT / CNRS UMR 7248
Sophia Antipolis, France

roland.kromes@univ-cotedazur.fr

Luc Gerrits
Université Côte d’Azur

LEAT / CNRS UMR 7248
Sophia Antipolis, France

luc.gerrits@etu.univ-cotedazur.fr

François Verdier
Université Côte d’Azur

LEAT / CNRS UMR 7248
Sophia Antipolis, France

francois.verdier@univ-cotedazur.fr

Abstract—We want to study the adaptability of blockchain
technology on IoT devices. In this paper we studied Hyperledger
Sawtooth adaptability on a Raspberry Pi 3 B+ depending on
the requirements of a special use case described by our indus-
trial partner Renault. In addition to the study of Hyperledger
Sawtooth adaptability, we modified the model of the BCM2837
architecture on SystemC-TLM. This model is known as the
”heart” of the Raspberry Pi 3 B+. By our knowledge, this
work conducts to the first IoT architecture able to interact
with others by using a Hyperledger Sawtooth blockchain. By
using this modification we could also obtain a significant gain,
an acceleration of 112 for SHA-256 and 293 for SHA-512
cryptographic algorithms.

Index Terms—Blockchain implementation in IoT embedded
systems, Blockchain in low power IoT communication networks,
Smart Contracts, Low Power Consumption Hardware Modeling

I. INTRODUCTION

The history of Internet of Things (IoT) started at the early
00’s thanks to the new type of applications using objects that
were connected to the Internet [1]. The usage of IoT devices
still increases, by statistics today the number of devices
taking part of IoT takes almost 30 billion [2]. Most of these
objects are constrained devices, that means that their hardware
resources are limited.

The effective execution of new IoT applications depends on
two basic exceptions: the computational power and the power
consumption of the target IoT device. Our aim is to model
an IoT device that is able to execute blockchain applications
with a constraint of low power consumption and with a
high performance. In our work we use an already existing
hardware model BCM2837 (better known as the heart of the
Raspberry Pi 3 B+) modeled on SystemC-TLM [3]. SystemC
is a language used in the first steps of hardware design of
such IoT devices. This programming language is popular in
industry field when we design the really first solution of our
architectures. The use of SystemC is relatively easy because
this language is based on C++, thus is an object oriented
language. In this paper we study the Hyperledger Sawtooth
blockchain [4], next we modify the BCM2837 model to be
able to execute Sawtooth applications with Smart Contracts

and we increase its performance by adding special Intellectual
Properties (IPs).

Since the last decade we see that the blockchain technology
and especially the Smart Contracts are starting to be used in
more and more use cases and in different domains. Today the
use cases can be found not only in finance domain but even
in healthcare, utilities, real estate domains and government
sector [5]. In 2016 [6] there were 18 use cases and only 4
of them were created for IoT applications. Today, the IoT
implementation of blockchains seems to be one of the first
activity sectors in the blockchain research works.

We can notice that blockchain technology appears even
in Smart City applications including the problematic of IoT
device security [7]. It’s clear that the main goal of the usage
of blockchain with Smart Contracts is the high security and the
tractability that this technology can provide. In our Smart IoT
for Mobility project [8] we try to develop IoT devices that will
be used in vehicles for connecting them on the blockchain.

A. Smart IoT for Mobility (SIM)

This multidisciplinary project is based on a new vehicle
infrastructure that was imagined by our industrial partner
Renault. In this new use case all of the car are connected
to a blockchain. The cars are equipped with different types
of sensors sending data about the state of the car, in different
types of situation as an accident or car selling/buying. The
sensors could be odometers (measure the mileage), radars
(detecting the safe-distance), 360◦ cameras (sending photos
about the environment of the car after an accident) and so on.
Despite of the different use cases the main goal of Renault
is to send the data after an accident. The data will be sent
in a format of Smart Contracts on a blockchain not only to
Renault but to the Police, to the insurance companies and
eventually to a car repair shop. With the Smart Contracts the
judgment procedure by the Police and insurance procedure
could be faster, and all of the information about the accident
would be stored for ever, because once the data is stored on
a blockchain it become immutable. The accident use case of
Renault is illustrated in the Fig. 1.

We have to notice that there are four academic research
teams of different domains working on this project, domains
are electronic engineering, computer science, economics and978-1-7281-2530-5/19/$31.00 ©2019 IEEE

Fig. 1. Use case of Renault

low. The laboratories of these teams are members of the
Université Côte d’Azur (UCA). Every team works on a
different thread of the project. Our goal is to model a low
power consumption IoT architecture for automobiles with the
availability to send blockchain transactions as the application
in the use case of Renault.

II. STATE OF THE ART

The blockchain technology starts to be more and more
popular, we can notice the appearance of a new type of use
cases and a need for merging this technology to IoT world. In
[7] we can read about ideas how to deploy new smart cities
with blockchain and IoT solutions.

A. Blockchain

In a blockchain the data is distributed between all of the
members of the network. That means that every member
contain exactly the same data. By this method we obtain a
database more secured opposed to the server based solutions,
because if a potential attack would make changes in a database
it should be done in all of the member’s database.

The blockchains are clustered in three big classes: public,
consortium and private blockchain.

1) Public blockchain: is a decentralized network because
every node can participate in the consensus process, and every
node can read every type of data.

2) Consortium blockchain: is partially centralized. There is
only a group of nodes that can take part of the consensus. And
not every node has permission to read data.

3) Private blockchain: is a fully centralized network, the
nodes participating in consensus and having permission to read
are predefined by the organization that deployed this network
[9].

In our project we are interested in private blockchains (in
particular Hyperledger Sawtooth) because of our industrial
partner Renault.

4) Blockchain’s structure: basically a block of the
blockchain contains the list of transactions and the hash of the
previous block. The hash gives the reference of the previous
block so in this way the blocks creates a chain and this
structure provides a full tractability of transactions and Smart
Contracts with a special time stamp [5] [9]. This structure is
shown in Fig. 2

Fig. 2. Example of a blockchain

B. Smart Contracts

Smart Contracts are digital programs that could be written
on different languages as Solidity, Java-Script and so on [10].
Smart Contracts were proposed by a computer scientist Nick
Szabo in 1996. A traditional contract is deployed between
two parties and it is verified with a trusted third party. Smart
Contracts allows to avoid this trusted third party because one
the contract is sent on a blockchain it becomes unchangeable.
By using Smart Contracts signing procedures can be faster
and more secured thanks to the secure characteristics of
blockchain.

C. Example of Consensus

Consensus is a main part of the blockchain, because this
algorithm provides the validity of a transaction. The consensus
algorithm is solve by the minors of the network. The most
popular consensus are described below:

1) Proof of Work (PoW): consensus is used in public
blockchains. The idea is that the first miner node whom can
solve a given cryptographic problem between the other miners
will got the law to create a block (and it wins cryptocurrency).
Ethereum blockchain use this type of consensus [11]. The
adaptation of this type of consensus on an IoT is very difficult
because of its resource needs [6].

2) Byzantine Fault Tolerance (BFT): is rather used in
private blockchains than in public ones, because in this
blockchains minors are not used for cryptocurrency gaining
but for obtaining a secured network. In BFT if 3/2 of minors
are agree with the validity of the transaction then it would
be validated and it would be taken into a block [12]. This
consensus is used for example in Hyperledger Fabric [13].

3) Power of Elapsed Time (PoET): is mainly used in
Hyperledger Sawtooth. We explain this consensus below.

D. Hyperledger Sawtooth

Hyperledger Sawtooth is an enterprise blockchain platform,
thus it is a permissioned (private) blockchain. Sawtooth was
designed to achieve a secured, scalable and modular structure.
Its structure is modular because it contains modular consensus

Fig. 3. Sawtooth’s architecture [15]

that means that Sawtooth is able to use different type of
consensus as PoW, PBFT, and PoET (Proof of Elapsed Time).
In addition to the consensus, Sawtooth is modular because, it
is possible to implement own modules in a node interacting
with the Validator (that could be seen as the miner in Ethereum
blockchain). A big advantage of Sawtooth is that the consensus
can be changed on running time [4].

Basically Sawtooth uses the consensus of Proof of Elapsed
Time that was invented by Intel for Software Guard Extensions
(SGX) that offers hardware-based security encryptions [14].
We have to notice that this consensus can be used not only
on SGX hardware specific architectures. In other type of
architectures PoET will be simulated. In our experiments we
have equally used this consensus.

1) PoET consensus: this consensus is an implementation of
the PoW to be able to use in a private blockchain. Contrarily
to PoW’s goal where fastest node creates block after solving a
hard cryptographic problem, here the node can create a block
if it has the smallest time sample that was distributed. In this
rule the node doesn’t need to work all the time as in PoW.
Since the node doesn’t have to solve a hard problem as fast as
it is possible, in this blockchain the hardware resource can be
less developed than in public blockchains. Thus theoretically
Sawtooth network consumes less energy and could be adapted
easier on IoT devices [4] [15] [16].

2) Architecture of Sawtooth: as we can see on Fig. 3 a
Sawtooth network is constructed by Validator nodes (we can
consider them as miners in other type of blockchains). The
interacting with Validator can be done with Client application
via a REST API. It has to be noticed that Transaction Proces-
sors and the Consensus Engine are modules that are outside
of the Validator, that is the reason why we are able to change
these modules easily [15].

The deployment of Smart Contracts is possible on Sawtooth,
the Smart Contracts are called Transaction Processors (TPs).

These Transaction Processors can be written on any program-
ming languages as Python, Javascript, C++ and so on. The
Smart Contracts creation by these languages is easier than
programming on other Smart Contract specific languages (eg.
Solidity). On Sawtooth we have even a possibility to execute
Ethereum Virtual Machine bytecodes that was compiled from
Solidity code. Sawtooth even allows to connect to other type
of blockchain as Ethereum and communicate with it. To
resume Sawtooth is a modular, private blockchain that was
a requirement of our partner Renault. In Section III we give
information about the scalability of this blockchain on an IoT
device, thus on a Raspberry Pi 3 B+ model.

III. IOT MODEL FOR SAWTOOTH BLOCKCHAIN
APPLICATIONS

As we mentioned above we would like to use and adapt
the BCM2837 architecture to our Sawtooth blockchain ap-
plication. The Broadcom chip integrates a quad-core ARM
Cortex-A53 and is used in Raspberry Pi 3.

A. Client application on Raspberry connected to the Validator
node

Sawtooth is implemented in Python embedded in Docker
images. These images are not compiled for the ARM pro-
cessors that used in the major embedded architectures. That is
why in this solution the Raspberry doesn’t take part physically
on the blockchain, it is only a client. To the best of our
knowledge today there exists only one related work integrating
an IoT network on Hyperledger Sawtooth [17]. This solution
describe an Agri-Food supply chain management. IoT sensors
send the captured data on a Hyperledger Sawtooth blockchain
to achieve a full tractability of a life cycle of product (from
production to selling). As in our case in this study the nodes
sending data to the blockchain are off-chain nodes. These
nodes communicate with the Validator via a REST API as in
our work. Contrarily to our work in this solution the off-chain
nodes are not IoT devices (PC’s were used).

Because of the low maturity of Sawtooth C++ SDK we build
our own program and library. This allows to format data and to
send them to the Validator node via a REST API. Our program
uses some special libraries as protobuf and curl because the
REST API uses Google Protocol Buffers to make easier the
communications and curl is used to send the data to the REST
API by HTTP. To be able to send data to the Validator the
program generates private-public key pairs using Secp256k1
elliptic curve. In addition to the key’s generation, the payload
is hashed by SHA512 cryptographic functions. The payload
that we send are based on JSON format that will be handled
later by a Transaction Processor (our Smart Contract).

B. Architecture adaptation

To adapt this architecture to our Sawtooth application we
use the SystemC-TLM functional model of the BCM2837 that
was deployed by the start-up Hiventive [18]. The modified
architecture is shown in Fig. 4. It has to be noticed that the
CPU is emulated with QEMU open source machine emulator

and virtualizer. This architecture with QEMU supports a
Debian Kernel (Linux version 4.19.0-2-arm64).

The basic architecture doesn’t contain the SHA-256 and
SHA-512 Intellectual Properties (IPs) that are hardware ac-
celerators.

C. Analysis of our program

To be able to increase the performance and eventually
decrease the energy consumption of our model we analyzed
our program that is based on a determination of the most called
functions during the program execution.

To better understand the dependencies between the function
calls we use gprof GNU profiler [19] that can determine a Call
Graph of the functions of a program. To be able to use this
tool the program must be compiled with the option -pg. In
addition to gprof we equally measured the elapsed time in the
functions.

The analysis was made on a Raspberry Pi 3 B+ (with
ARMv8 CPU). Scenario of the analysis:

Sending data to IntKey Transaction Processor:
• This is an default transaction processor of Sawtooth.

The data that is sent is based on a JSON for-
mat, (a list of key:value). The data that we send
sets/increments/decrements the value of a variable in the
transaction processor. The size of the data is around 128
Bytes.

IV. EXPERIMENTATIONS AND RESULTS

The 3 measurements below are more focused on our use
case. We can imagine that a car will send more data than 128
Bytes (maybe images, sensors data and radars raw’s data and
so on):

• Sending 1 MByte data on dedicated car Transaction
Processor.

• Sending 2 MBytes data on dedicated car Transaction
Processor.

• Sending 41 MBytes data on dedicated car Transaction
Processor.

A. Results of the program’s analysis

In every scenarios the program uses JSON data format with
cbor serialization (required for the transaction payload). To
respect the format of the payload the program does conversions
between string, char and byte types. Because of these conver-
sions more than 85% of the total execution time was spent
in functions related on these type conversions. It is probably
possible to perform some optimization to reduce this number
of call, possible only on software level modifications. In our
study we rather look for a hardware level solution.

During the program execution there is a high number of
cryptographic hash function calls, mainly SHA-256 and SHA-
512. These functions could be computed rather on ASIC
(Application-Specific Integrated Circuit) than on CPU. Using
ASIC for solving a specific function is generally faster and
consume less energy than CPUs.

1) Sending data to IntKey Transaction Processor: The total
execution time takes 33.2 ms and the SHA-256 and SHA-512
take less then 0.02% of the total time. However the Elliptic
Curve Digital Signature Algorithm (ECDSA) using Secp256k1
elliptic curve that was used for creating private-public key
pairs takes 3.82% of the total time. It is hard to find full
ASIC implementation of ECDSA using Secp256k1. However
this procedure uses SHA-256 hash functions taking 17% of
total time spent in ECDSA algorithm.

2) Sending 1 MBytes data on dedicated car Transaction
Processor: The total execution time takes 4.495s. The payload
of the message that sends the data is hashed. Because of this,
SHA-512 is called 16573 times and it takes 3.46% of total
execution time. The creation of one hash takes 9.382µs.

3) Sending 2 MBytes data on dedicated car Transaction
Processor: The total execution time takes 8.76s. SHA-512 is
called 32435 times and it takes 3.49% of total execution time.
The creation of one hash takes 9.433µs.

4) Sending 41 MBytes data on dedicated car Transaction
Processor: The total execution time takes 161.931s. SHA-512
is called 641047 times and it takes 4.04% of total execution
time. The creation of one hash takes 10.21 µs.

The results of these 3 latest analysis is summarized in the
Tab. I.

TABLE I
SUMMARIZED EXECUTION TIME (DATA ≥ 1 MBYTE) REPORTED AS AN

AVERAGE OF 10 RUN

Data Size Total
exec. time

Time occupation
of total time by

SHA-512

Time of creation
of one SHA-512

Hash
1 MByte 4.495 s 3.46 % 9.382 µs
2 MBytes 8.76 s 3.49 % 9.433 µs
41 MBytes 161.931 s 4.04 % 10.21 µs
Average : 3.66 % 9.675 µs

The Tab. II summarizes execution time when data is less
than 1 MBytes.

TABLE II
SUMMARIZED EXECUTION TIME (DATA < 1 MBYTE), WHERE ECDSA→
SHA-256 MEANS THAT SHA-256 TAKES 17% OF THE EXECUTION TIME

OF THE TOTAL TIME EXECUTION OF ECDSA

Data Size Total
exec. time

Time occupation
of total time by

SHA-512 & SHA-256

Time occupation
of total time by

ECDSA →
SHA-256

< 1 MByte 32 ms 0.02 % 3.82 %
→ 17 %

We can notice that when data type is greater then 1 MBytes,
SHA-512 functions takes 3.5-4% of the total time and SHA-
256 becomes negligible when the size of data is big.

B. BCM2837 modified functional SystemC model

After the results of the program’s analysis we found that
with hardware accelerators realizing the cryptographic hash
functions as SHA-256 and SHA-512 we can obtain a signif-
icant gain. In this modified BCM2837 model we added this

Fig. 4. BCM2837 model with hardware accelerator IPs

type of hardware accelerator modules shown on Fig. 4. The
IPs are connected to the Memory-Mapped Rooter that is equal
to a traditional bus.

As we mentioned earlier on the BCM2837 we are able
to run a Debian Kernel thanks to QEMU. When the Kernel
is in the boot process it needs Device Tree Blob (DTB)
containing information about the hardware components that
the architecture has. These information are the addresses and
the partitions of these components. The Kernel has to be
informed about the new IPs (SHA-256 and SHA-512) that we
add to the architecture, thus we have to indicate the addresses
that will be used by these IPs. We add addresses to the Device
Tree Source (DTS) that will be compiled into a DTB format.

To get access to the IPs from the user application (from our
program) we deployed Kernel Drivers for it. From the user ap-
plication we don’t have direct access to the IPs, because their

TABLE III
PROCESS TIME AND GAIN, THE ASIC ESTIMATED FOR 40 NM CMOS

TECHNOLOGY

Process time
CPU

Process time
ASIC Gain

SHA-512 9832 ns 32 ns 293.18
SHA-256 2760 ns 24.48 ns 112.75

addresses are accessible only by the Kernel. In our program
the SHA-512 function is called from Crypto++ (Version 8.3)
cryptographic C++ standard library. The SHA-256 function
in ECDSA algorithm was implemented in libsecp256k1 C++
library. In these libraries we modified the functions SHA-512
and SHA-256, when these functions are called form the user
application they call the dedicated Kernel Drivers that interact
with the associated IP.

To be able to give an idea of the gain that we can achieve
with hardware accelerators we were strongly inspired by
the analysis of SHA implementations of the University of
California and Katholieke Universiteit Leuven [20]. In this
study the SHA functions were implemented on ASIC based on
130 nm CMOS (Complementary Metal Oxide Semiconductor)
transistor technology. The Raspberry Pi 3 B+ models are
realized on 40 nm CMOS technology. By using lower size
CMOS technology of CMOS the delay will also lower. To
estimate the delay for that 40 nm technology we used the
study of the scaling equations for the accurate prediction of
CMOS device performance for 180 nm to 7 nm [21].

After the delay estimation for the 40 nm CMOS technology
we compare the execution time of one hash of SHA-256
and SHA-512 executed on the Raspberry (on it’s CPU) and
executed on the ASIC hardware accelerators. These execution
times of only one hash creation and the gain that can be
obtained are summarized in the Tab. III. We have to notice
also that to reach these gains the SHA hardware accelerators
must work at a frequency of 746MHz for the SHA-512 and
794MHz for the SHA-256.

When the data size that will be sent is greater than 1 MByte
without the hardware accelerators we saw that SHA-512 takes
4-3.5% of the total execution of the program. By using SHA-
512 IP we can decrease this usage to 0.012%. In the case
when the data size is less then 1 MByte in ECDSA Secp256k1
algorithm the SHA-256 function was used 17% of the total
time of ECDSA algorithm. The hardware accelerator allows
to decrease this percentage to 0.14%.

C. Current Consumption of Raspberry Pi 3 B+ during the
application executions

In this part of our work we measure the current consumption
of the program execution according to the data size that is
sent. The results are given with and without the Idle mode
consumption of the Raspberry. The Tab. IV represents these
results. The results show that the current consumption is quasi
linear in terms of the data size.

We notice that the execution of the OS on Raspberry Pi
consumes around 0.52 A. The Fig. 5 represents the curves

TABLE IV
CURRENT CONSUMPTION WITH AND WITHOUT OS ACCORDING TO THE

DATA SIZE TO SEND

Data size
to send

Current
consumption with Idle

Current
consumption without Idle

< 1 MByte 0.13 A.s / 0.0365 mAh 0.024 A.s / 0.0065 mA.h
1 MByte 3.37 A.s / 0.94 mA.h 0.76 A.s / 0.21 mA.h
2 MBytes 6.29 A.s / 1.75 mA.h 1.51 A.s / 0.42 mA.h
41 MBytes 153.07 A.s / 42.52 mA.h 24.06 A.s / 6.67 mA.h

Fig. 5. Current consumption on Raspberry Pi

of the current consumption. This figure doesn’t represent the
irrelevant case of 41 MBytes because its execution time is
around 40 times higher than in the case of 1 MByte data. We
can also notice in the curves that the more data is sent the
more is the power consumption, because the C++ application
has more computation to do. We can equally see the different
phases of the current consumption. The program is started
in the first phase, is executed in the second phase, and the
memory is freed in the third phase.

V. CONCLUSION

In this paper we studied the implementation of Hyperledger
Sawtooth on a Raspberry Pi 3 B+. A full node of Sawtooth
is not already implementable on the Raspberry because of the
dependencies of Docker images that are not compatible with
ARMv8 processor used by the Raspberry. We figured out with
an alternative solution where the Raspberry can connect to
a node of Sawtooth but the node is deployed on a required
architecture (PC X86 64). For this solution we deployed our
own client C++ SDK for Sawtooth.

In the second phase of our work we studied the most called
functions by our application. We modified the BCM2837
architecture by adding hardware accelerators computing SHA
crytpographic functions. The results show that we can obtain a
high gain of the performance. We equally measured the current
consumption of the program on the Raspberry.

In latest studies we would like to determine a power
controlled architecture model of the BCM2837. By the power
controlled model we would be able to determine a power man-
agement to decrease the power consumption of the program
and equally the whole architecture.

In more advanced phase of our research we could modify
our model running the use case application on other types of
blockchain as Ethereum and IOTA, but still achieving a high
performance and optimal energy consumption.

ACKNOWLEDGMENT

This work has been supported by the French government,
through the UCAJEDI and EUR DS4H Investments in the
Future projects managed by the National Research Agency
(ANR) with the reference number ANR-15-IDEX-0001 and
ANR-17-EURE-0004.

REFERENCES

[1] S. Madakam, R. Ramaswamy, and S. Tripathi, “Internet of Things (IoT):
A literature review,” Journal of Computer and Communications, vol. 3,
no. 05, p. 164, 2015.

[2] Accessed: 2018-10-14. [Online]. Available: https://www.statista.com/
statistics/471264/iot-number-of-connected-devices-worldwide

[3] G. Arnout, “SystemC standard,” in Proceedings 2000. Design Automa-
tion Conference. (IEEE Cat. No.00CH37106), Jan 2000, pp. 573–577.

[4] K. Olson, M. Bowman, J. Mitchell, S. Amundson, D. Middleton, and
C. Montgomery, “Sawtooth: An Introduction,” The Linux Foundation,
Jan, 2018.

[5] K. Christidis and M. Devetsikiotis, “Blockchains and Smart Contracts
for the Internet of Things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[6] M. Conoscenti, A. Vetr, and J. C. De Martin, “Blockchain for the
Internet of Things: A systematic literature review,” in 2016 IEEE/ACS
13th International Conference of Computer Systems and Applications
(AICCSA), Nov 2016, pp. 1–6.

[7] K. Biswas and V. Muthukkumarasamy, “Securing smart cities using
blockchain technology,” in 2016 IEEE 18th International Conference on
High Performance Computing and Communications; IEEE 14th Inter-
national Conference on Smart City; IEEE 2nd International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), Dec 2016, pp.
1392–1393.

[8] F. Verdier, P. De Filippi, T. Marteu, F. Mallet, P. Collet, L. Arena,
A. Attour, M. Ballatore, M. Chessa, A. Festré, and P. Guitton-Ouhamou,
“Smart IoT for Mobility: Automating of Mobility Value Chain through
the Adoption of Smart Contracts within IoT Platforms,” in 17th Driving
Simulation & Virtual Reality Conference (DSC 2018), 2018.

[9] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of
Blockchain Technology: Architecture, Consensus, and Future Trends,”
in 2017 IEEE International Congress on Big Data (BigData Congress),
June 2017, pp. 557–564.

[10] N. Szabo, “Smart contracts: building blocks for digital markets,” EX-
TROPY: The Journal of Transhumanist Thought,(16), vol. 18, 1996.

[11] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32,
2014.

[12] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient Byzantine Fault-Tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, Jan 2013.

[13] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W. Cocco, and J. Yellick,
“Hyperledger Fabric: A Distributed Operating System for Permissioned
Blockchains,” in Proceedings of the Thirteenth EuroSys Conference,
ser. EuroSys ’18. New York, NY, USA: ACM, 2018, pp. 30:1–30:15.
[Online]. Available: http://doi.acm.org/10.1145/3190508.3190538

[14] Accessed: 2019-06-13. [Online]. Available: https:
//www.intel.co.uk/content/www/uk/en/architecture-and-technology/
software-guard-extensions.html

[15] Accessed: 2019-06-14. [Online]. Available: https://sawtooth.hyperledger.
org/docs/core/releases/latest/contents.html

[16] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On Security
Analysis of Proof-of-Elapsed-Time (PoET),” in Stabilization, Safety, and
Security of Distributed Systems, P. Spirakis and P. Tsigas, Eds. Cham:
Springer International Publishing, 2017, pp. 282–297.

[17] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda, “Blockchain-based
traceability in agri-food supply chain management: A practical imple-
mentation,” in 2018 IoT Vertical and Topical Summit on Agriculture -
Tuscany (IOT Tuscany), May 2018, pp. 1–4.

[18] https://www.hiventive.com/, Accessed: 2019-07-18.
[19] S. L. Graham, P. B. Kessler, and M. K. Mckusick, “Gprof: A Call Graph

Execution Profiler,” SIGPLAN Not., vol. 17, no. 6, pp. 120–126, Jun.
1982. [Online]. Available: http://doi.acm.org/10.1145/872726.806987

[20] Y. K. Lee, H. Chan, and I. Verbauwhede, “Iteration Bound Analysis
and Throughput Optimum Architecture of SHA-256 (384,512) for Hard-
ware Implementations,” in Information Security Applications, S. Kim,
M. Yung, and H.-W. Lee, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 102–114.

[21] A. Stillmaker and B. Baas, “Scaling equations for the accurate
prediction of CMOS device performance from 180nm to 7nm,”
Integration, vol. 58, pp. 74 – 81, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167926017300755

