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Abstract—This paper presents a blockchain cloud deployment
for an industrial vehicle use case. Hyperledger Sawtooth is
used as distributed ledger with Rancher and Kubernetes as
container-orchestration. This paper aims to explore the feasibility
and scalability of the use case in a real-world scenario cloud
deployment. Also, the blockchain performances is analyzed by
stressing the implementation with virtual IoT clients, changing
the blockchain settings, number of peer members and editing
the core software default parameters. Benchmarks will reveal
that Hyperledger Sawtooth performance can be as high as 25
transaction per seconds for a network of 4 nodes with PBFT
consensus. Results lead us to discuss the possible components
reducing throughput and blockchain commit rate.

Index Terms—Blockchain, Cloud, Hyperledger Sawtooth,
PBFT

I. INTRODUCTION

Blockchain technology has emerged with Bitcoin in 2008
[1] with a novel protocol aimed to distribute a ledger among
multiple peers using a common consensus — Proof of Work
(PoW). The blockchain ledger is composed of blocks linked
to each other using the previous block’s hash (i.e., a chain of
blocks). Each block contains transactions that are equivalent
to the data that the blockchain contains. The data transparency,
traceability and immutability enable the existence of cryp-
tocurrencies (bitcoin in this case). More recently, blockchain
technology has evolved to allow the execution of custom
business logic in the form of programs inside the blockchain,
called Smart Contracts [2]. Ethereum Virtual Machine (EVM)
can execute Solidity compiled code directly in each network’s
peer. After the Ethereum release with its smart contracts,
groundbreaking new applications and use cases emerged from
this technology (supply-chain [3], smart grid [4], healthcare
[5]).

This paper focuses on industrial blockchain platforms capa-
ble of answering an industrial use case. The vehicular use case
requires sending approximately 25 transactions per hour (cal-
culated from ONISR 2019 accident report [6]). Performances
of a blockchain depend on multiple parameters such as finality,
transaction execution rate and smart contracts execution rate.
The smart contracts execution rate is an important element to
build an industrial blockchain.

The selected use case is represented in Fig. 1 and could
represent a vehicle infrastructure. In this use case, Renault’s

cars are connected to blockchains deployed on several clouds
and are able to connect each time an accident occurs. The ideal
scenario is that Renault’s cloud is connected with other types
of organizations like insurance companies, expertise, police
and car mechanics.

Fig. 1. Blockchains are used for declaring automatically the accidents in the
Renault’s vehicular infrastructure

The cars will contain IoT devices, and will be able to estab-
lish a connection with Renault’s cloud technology based on a
blockchain with smart contracts. The cars will contain various
sensors that can determine the state of the car (odometers,
radars, camera, etc.). The data recorded before the accident
would be sent to Renault’s cloud using a smart contract.
After transaction execution, other companies connected to
Renault’s cloud could get access to the blockchain ledger and
would allow adding new transaction processing and verifica-
tion. With the help of police and predefined juridically legal
smart contracts, the insurance company could, for example,
determine who was responsible for the accident situation.
This infrastructure contains a lot of different entities. The
obtained structure is rather an ecosystem than a typical vehicle
infrastructure.

This paper focuses on implementing a blockchain in a
cloud. A fixed cloud architecture using a reasonable amount of
processing power simulates a real-world cloud environment.
Thanks to TAS Group, it is possible to create such cloud
environment. TAS Group is a leading technology company,
listed on the stock exchange, providing advanced solutions



for cards, payment systems and capital markets. The group
operates data centers in France (Sophia Antipolis) and Italy
from which it offers hosting and cloud computing services.

The article continues as follows: In Sect. II is a brief
description of the blockchain Hyperledger Sawtooth, the smart
contracts, and the cloud technology, including related works
about vehicle infrastructure systems. Sect. III describes the
deployment of the use case to a real world scenario using
a cloud. Sect. IV investigates the feasibility, scalability and
performances of the proposed cloud model. Sect. V discusses
about future improvements and conclude about the cloud
deployment.

II. STATE OF THE ART

A. Hyperledger Sawtooth blockchain

Hyperledger Sawtooth is part of Hyperledger blockchain
framework family, initially contributed by Intel [7]. Sawtooth
supports both permissioned and permissionless deployments.
Sawtooth software architecture is highly modular (depicted in
Fig. 2), which suits enterprise use case.

Fig. 2. Hyperledger Sawtooth architecture

Sawtooth modular structure is constituted basically of a
validator which is the core of the peer, one or multiple
transaction processors handling transaction business logic and
a REST API providing convenient HTTP communication with
the peers. Moreover, Sawtooth supports two main consensus
algorithms (PoET and PBFT) and other algorithms for devel-
opment purposes or under development.

• PBFT: Practical Byzantine Fault Tolerance is introduced
in 1999 by Barbara Liskov and Miguel Castro [8]. It is
a voting based consensus algorithm used for small P2P
networks that does not require open membership. PBFT
is derived from Byzantine problems. IBM researchers
studied PBFT performances and showed that the number
of nodes is limited to 20 (throughput follows a O(1/n)

function) [9]. PBFT allows blocks to be validated, based
on a minimum percentage of agreement of the nodes in
the network (usually 2/3), so even if there are a few faulty
or malicious nodes in the network, the overall system can
continue to operate in a stable manner.

• PoET: Based on Software Guard Extension (SGX) tech-
nology, PoET was implemented in Intel’s Sawtooth Lake,
before Intel joined Linux Foundation’s Hyperledger con-
sortium [10]. In PoET consensus algorithm the network
peers have to wait a randomly distributed amount of
time. This amount is distributed after every new block
committing. The peer that had the smallest amount of
wait time will have the right to publish a new block.

This work only studies the use case with a PBFT consensus.
Shi et al. [11] have studied Hyperledger Sawtooth’s perfor-
mance as a private blockchain, using the PoET consensus.
The author used AWS and ExoGENI cloud providers, which
provided them multiple resources configuration directly from
the service. Their study results in an average throughput of 7
transaction per seconds and that Sawtooth input transaction
rate is limited (Fork and node fail rise for higher input
transaction rate).

B. Smart contracts

Smart contracts’ general idea is to deploy and execute a
program inside the blockchain (executed in a smart contracts
virtual machine). In industrial use cases, the smart contracts
implementation will determine how the data will be processed.
Thus deciding the type of smart contracts is essential when
selecting a blockchain platform.

Hyperledger Sawtooth has a transaction processor that is
analogous to a smart contract. A transaction processor is a
program deployed by the node owner and runs next to a
validator. Each transaction processor describes one specific
application business logic (i.e., transaction family), and can
be written in Python, Rust, C++, and Java. In a Hyperledger
Sawtooth network, each node validator has one or multiple
transaction processors, which allow parallel transaction ex-
ecution. Hyperledger Sawtooth also developed a transaction
processor that enables full compatibility with Solidity smart
contracts using an Ethereum Virtual Machine (EVM). Solidity
is an object-oriented statically-typed programming language
initially used for the development of Smart Contracts on
Ethereum Virtual Machines.

Other blockchains, such as the Substrate blockchain frame-
work [12], provides two possibilities by implementing a tradi-
tional smart contracts EVM or application-specific runtimes
modules. Runtime modules in Substrate are business logic
deployed directly inside the blockchain storage. Thus the
modules are part of the blockchain state. In this paper a
Hyperledger Sawtooth transaction processor was developed in
Rust [13]. Rust is a language created by Mozilla Research
that takes full advantage of modern hardware (parallelism,
concurrency, memory protection). Rust language performance
has often been compared to C++.



C. Blockchain and cloud computing
In the proposed ecosystem the blockchain is deployed

by a cloud and the end devices are IoT. IoT associated
with blockchain requires additional computing resources be-
cause IoT devices cannot embed the blockchain’s size and
blockchain processing power requirements, thus edge com-
puting is best suited for IoTs. For these reasons, end-devices
perform only some cryptography processing, transaction for-
matting, and send data to the blockchain hosted in the cloud.

Cloud computing is the on-demand availability of computer
resources through services available on the Internet. Cloud
computing has a centralized infrastructure (of data-centers) in
multiple locations worldwide. Each data-centers are hosting
the cloud, and different services allow the deployment of
applications, data, networks, and other infrastructures.

In public blockchain networks, hardware resources have
diverse nature due to the network’s open-source nature; for
example, in Bitcoin networks, miners have evolved from work-
stations with CPUs (first generation miners) to application-
specific integrated circuits (ASICs miners) [14].

In consortium blockchains networks, nodes are owned by
consortium organizations. Availability constraints often force
organizations to pay for Infrastructure-as-a-Service (IaaS)
from various cloud providers (or can host their own nodes).
This leads to multi-cloud-based networks. However, in this
paper, the solution is based on a single cloud provided by
TAS Group.

Other cloud providers offer Blockchain as a Service based
on Software as a Service model: Microsoft and ConsenSys
introduce Ethereum Blockchain-as-a-Service (BaaS) on Mi-
crosoft Azure in 2015 [15], Amazon introduced Ethereum
and Hyperledger Fabric BaaS in 2019 [16]. The only BaaS
service based on Hyperledger Sawtooth found is Sextant, a one
click blockchain deployment solution offered by Blockchain
Technology Partner (BTP), in Amazon Web Services Market-
place [17]. It is noticeable that all these offers are based on a
specific blockchain platform and less configurable by users. In
the context of this paper, for performance analyzes purpose,
blockchains settings need to be changed to make observations
according to these modifications.

Hyperledger Sawtooth’s core is based on a modular ar-
chitecture whose components are suitable with application
containers. In this paper, Rancher [18] is used which is an open
source software platform that use Kubernetes for containers
orchestration.

Edge computing brings the computer resources closer to the
end-devices and pre-processes information to save bandwidth
and storage. This paper use case requires a decentralized
network of blockchain nodes to be deployed on a cloud be-
cause it can i) simulate the decentralization using Kubernetes,
ii) handle the process requirements of an entire blockchain
network and iii) do an easy configuration variation.

Other paper such as Ampel et al. [19] evaluate the through-
put of Sawtooth using the now deprecated Calliper benchmark
tool. They found that the blockchain can achieve a 2300tps
throughput, but do not show detailed results about the reject

rate and commit rate (only input tps and transaction latency).
Moreover, Benahmed et al. [20] has a more in-deph analysis
of Sawtooth (CPU, RAM, tps, and node count) and concluded
a 3 tps after 1000 transactions with the PoET consensus.

III. CLOUDIFICATION OF VEHICLE USE CASE

A. Problem statement

Hyperledger Sawtooth has been tested numerous times to
study its strengths and weaknesses in research environments.
This paper describes and study the Hyperledger Sawtooth
blockchain closer to industrial conditions. This study will
answer:

• The first step on how to deploy a local private blockchain
project to a cloud. What is the cloud architecture of an
industrial blockchain?

• What are the performances of the deployed private
blockchain? Does the realized deployment perform dif-
ferently than a local execution? Are the results consistent
in time, and what is the impact of the number of peers
in the blockchain network?

• What issues are emerging from a cloud-based
blockchain?

• Verify PBFT consensus network limitation.
The cloud deployment aims to get as close as possible to

a real case situation. There are multiple ways to configure
the Infrastructure-as-a-Service (IaaS), and the provided de-
ployment is the compilation of authors research and the TAS
Group engineer’s guidance.

B. Cloud architecture

It is a Kubernetes cluster of 6 cloud instances, including
three masters and three workers. The cluster is managed by
Rancher. The blockchain network runs on workers with a total
capacity of 282 GB of RAM (94.2 GB x 3 workers) and 192
CPU cores (64 CPU cores x 3 workers). To reduce latency due
to cluster management tools running, a significant amount of
resources is provided to Kubernetes masters; masters have a
total capacity of 48 GB RAM (16 GB x 3 masters) and 24 CPU
cores (8 CPU cores x 3 masters ). By default, each instance
has 50 GB of storage. For validators transactions storage, 500
GB HDD storage is added to workers, so each worker has a
total of 550 GB.

C. Cloud deployment model and benchmarking

Sawtooth network is deployed using Docker and Kuber-
netes resources. Kubernetes pods run the blockchain Sawtooth
nodes. Each pod includes Sawtooth modules that run in
different docker containers. As shown on Fig. 2, the pods
run a validator container, a REST API container, a consensus
engine container, and 10 cartp containers. cartp is the use case
transaction processor written in Rust. 10 transaction processors
are deployed to take advantage of parallel transaction execu-
tion. For each node, the validator is exposed to other nodes
through a Kubernetes clusterIP service. Each test hardware
resources configuration is described in Table I. The entire
blockchain network, as described above, is deployed in a single



Kubernetes namespace called sim-sawtooth-net. To expose the
network to external client benchmark, only nodes’ REST APIs
are exposed through a single ClusterIP service. A Kubernetes
Ingress is defined on this service. Thus client benchmark can
access to the network using a domain name define on it.

Influxdb is used with Grafana to extract and display
blockchain related metrics, this functionality is called under
the namespace: monitoring. Grafana is exposed to external
access through a Kubernetes clusterIP service, on which is
defined an ingress.

The following figure (Fig. 3) summarizes the Sawtooth
network deployment; the clients (i.e., simulating the IoT
devices) are located in our laboratory on a local computing
machine.

Fig. 3. Hyperledger Sawtooth network cloud deployment

500 vehicles are simulated and will send crash transactions
in a round-robin way for the 500 car-owner identities. A crash
transaction consists of sending an accident ID, a signature, and
a data public key:

• Command: Action to execute in the transaction processor
• Accident ID: Data location ID. It is a 46 characters

content addressing identifier.
• Signature: Signature (64 bytes) of the data sent (using the

car private key).
• Data public key: Public key (32 bytes) associated to the

private key that signed the data.
A benchmark was built using a mix of Bash, Python,

Docker, and JavaScript. The cluster is controlled using the
Rancher CLI that helps us to call Kubernetes commands (i.e.
kubectl to delete all pods and start from fresh setup). Bash
scripts encapsulate Rancher CLI calls and the Python script
orchestrates the benchmark using subprocesses that call bash
scripts and docker-compose (Fig. 4).

Each tests consists of initializing the 500 vehicles and then
sending 10000 crash transactions at an input transaction rate
of 5, 10, 15, 20, 30, 40 and 50 tps. The input transaction
rate (tps) is defined by the number of transaction sent to the
blockchain network per seconds. It is important to note that tps
is not equal to the committed transaction rate (i.e. the number

of transactions added and finalized in the blockchain). Tests
are executed 3 times to minimize the cloud resource variance.
Resources allocated to each test is described in Table I.

Fig. 4. Benchmark structure

TABLE I
RESOURCES ALLOCATED FOR EACH TEST

Env # Blockchain
Nodes

CPU/node
(vCPU)

RAM/node
(GB)

Disk/node
(GB)

1 4 48 10 412.5
2 6 32 10 275
3 12 16 10 137.5
4 18 10 10 91.6
5 24 8 10 68.7

IV. CLOUDIFICATION RESULTS

A. Feasibility and scalability

The paper studies an industrial use case where multiple
private companies own the blockchain. In a consortium sce-
nario, Sawtooth allows all batch signers and transaction signers
to submit batches and transactions. In this blockchain, the
transactions are encapsulated into batches. It should be noted
that in practice different private keys are used to sign the batch
and the transaction. Also, it means that only specific nodes
can join the validator network, and only specific nodes can
participate in consensus. In the paper use case, all validators
participate in the PBFT consensus.

A cloud architecture fits well for a consortium scenario.
Any company that desires to start a consortium blockchain
can easily add and remove validator nodes thanks to container
orchestration. Moreover, if a partnership requires adding new
validators, the network can change the Sawtooth settings
(using Settings transaction processor) by adding new PBFT
members.

During all the tests, the cloud resources limits (CPU and
RAM) where never been reached. This means that increas-
ing the cloud resources is useless when using Sawtooth
blockchain.

In the following, we will observe that Sawtooth do not scale
linearly. With the same number of nodes, increasing resources



does not affect throughput performances. Also, PBFT con-
sensus has already been studied to not scaling well due to
exponential number of network communication. The following
experimentation confirm the previous statement.

B. Performances

The paper analyzes Sawtooth performance following the test
model in Sect. III-C. By varying the number of validator nodes
and the input transaction rate, we evaluate Sawtooth’s perfor-
mance using the total committed transactions, the number of
transactions committed per second, and the number of rejected
transactions1.

Hyperledger Sawtooth blockchain prevents DDoS attacks
using the maximum batches-per-block as a limit. It helps to
rate-limit the network as desired, but the paper’s aims to
achieve a high throughput by increasing this limit as high as
possible (e.g. 1000 batches-per-block). In preliminary results,
increasing the batches-per-block parameter shows a second
limitation: the pending transaction queue size. In combina-
tion with a QUEUE MULTIPLIER, the maximum batches-
per-block also indirectly determine the maximum pending
transaction possible in a node. Sawtooth version 1.2 defines
the pending queue size limit as QUEUE MULTIPLIER ×
Moving Avg batch rate. By default, QUEUE MULTIPLIER
is equal to 10, which results in a queue size of about 500-1k
batches. Increasing QUEUE MULTIPLIER to 200 leads to an
average of 8-9k pending queue size. Expanding the pending
queue size using the QUEUE MULTIPLIER can affect the
stability of the Sawtooth node. Indeed, the blockchain nodes
totally fail by setting the maximum batch-per-block to 1000
and a QUEUE MULTIPLIER higher than 100. This study
takes this limitation into account. Thus, the maximum batches-
per-block is fixed to 100 to prevent sawtooth-core from
freezing because of process resource starvation.

It is important to note that this study aims to explore the
maximum capabilities of the blockchain. Thus, all tests have a
fixed a QUEUE MULTIPLIER of 200 and a batch-per-block
of 100.

1) Performance observation on the number of nodes:
Increasing the number of nodes reduces performance. Starting
from an input tps of 20, and scaling the number of nodes up
to 24, reduces the total committed transactions, thus reducing
commits per second and increasing rejects.

As depicted in Fig. 5, the total commits decreases for a
network configured with 12, 18, and 24 nodes when input tps
is higher than 15-20. For a network configured with 4 and 6
nodes, there are not rejects. Thus 100% of input transaction
throughput is committed successfully.

In each test, the pending transaction queue is being filled
then emptied. It can take up to 15-20min to empty the pending
transactions queue.

2) Performance observation on the transaction validation
rate: Depicted in Fig. 6, we can observe the committed
transactions per second. In the best situation we should have

1More graphical results are available on: https://github.com/projet-
SIM/sawtooth-benchmark-coins-2021
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a linear variation of commit rate from input tps. However,
the peak committed transaction rate is 25 when sending an
input throughput of 50 tps on 4 nodes. We also notice that the
general trend of the commit rate in each node configuration is
stabilizing after an input transaction rate of 25. As previously
explained, the total rejects is increasing for 12, 18 and 24
nodes configurations.
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3) Performance observation on the transaction validation
rate variance: Depicted in Fig. 7, the variance of the commit
rate represents the transaction’s squared deviation (for three
tests) from its mean. In a 4 nodes configuration, the mean
commit rate (in Fig. 6), using 50 input tps, is 25 commits per
second with a variance (in Fig. 7) of 39 on 3 tests. We can
observe that over all tests the variance of commit rate increase
significantly for all input transaction rate higher than 20.

We can conclude from the performance study the minimum
configuration to reach 25 validated transactions per second
for Hyperledger Sawtooth using PBFT consensus. Using the 4
nodes configuration the resources defined are: 48 CPU, 10GB
RAM, and 412.5 GB disk space.

https://github.com/projet-SIM/sawtooth-benchmark-coins-2021
https://github.com/projet-SIM/sawtooth-benchmark-coins-2021
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V. DISCUSSION AND CONCLUSION

When increasing input throughput, we observed a trans-
action commit per second limitation. First of all, hardware
monitoring shows that Hyperledger Sawtooth peers are not
using all available resources. Secondly, transaction processor
execution latency has been optimized in Rust language which
provide one of the fastest execution latency. Also, the consen-
sus algorithm can be modified, but after discussing it with the
Hyperledger developers, the consensus configuration can not
improve the transaction rate significantly. Finally, sawtooth-
core can threshold the block production due to software
limitations. In Sawtooth version 1.2 multiple core libraries
are coded using only a single thread (Python). Thus, we
can conclude that most of Sawtooth blockchain throughput
limitation is caused by sawtooth-core. Version 2.0 of Sawtooth
will be fully coded in Rust and thus, with multi-processing
enabled, can provide faster transaction and block commit rate.

In this paper we have successfully deployed a Hyperledger
Sawtooth blockchain network on cloud infrastructure. We
achieved to set up a benchmark model with multiple hardware
configurations. The number of input transactions is 9.3 times
better than our previous results obtained in a local setup by
Gerrits et al. [21]. We expose detailed data concerning the
transaction threshold of 25 commits per second – without
rejects - of Hyperledger Sawtooth on a 4 nodes network con-
figuration. In addition, we confirm that using PBFT consensus
Sawtooth version 1.2 can not have more than 12 nodes.

As a perspective, in future works we aim to compare Hyper-
ledger Sawtooth performances with the Substrate blockchain
framework and Ethereum blockchain using the same cloud
infrastructure.
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